
1

Task as a Service
Extending the Cloud From an App Development Platform into a Tasking Platform

A Position Paper

Joanna W. Ng
IBM Canada Software Laboratory, CAS Research

jwng@ca.ibm.com

Abstract

This paper coins the term “Tasking” and defines a
“Tasking Conceptual Model” as a software engi-
neering approach. In this approach, instead of
producing Apps as a runtime artifact whole for its
users, software developers produce intermediary
artifacts, as accessible controls parts for average
users. Using these controls, users are enabled to
construct their own tasks autonomously by using
resources of their own choice from across the
cloud. I propose using web tasking over the cloud
as a tasking approach to provide (1) average users
consistent and universal tasking experience across
the cloud despite of the resource diversity; and
also, to provide (2) developers prescriptive, stand-
ard-ready software engineering steps to produce
and contribute web-tasking resources. This pro-
posed approach also provides (3) built-in interop-
erability. Users can use web-tasking resources
produced by independent parties and expect that
they can interoperate seamlessly together. I also
propose a new cloud layer for users on top of the
existing cloud layers for developers to create
Apps. I coin this new cloud layer for end users
“Task as a Service” (TaaS).

Keywords: Web services, web tasking, RESTful
Architecture, Web Automation, Web Agents,
Cloud, Cloud Infrastructure, Software as a Ser-
vice, SaaS

1 Introduction
Cloud provides a rich and efficient environment
for software developers to develop, deploy and
run Apps for their users [1]. Apps are today’s
mechanism for users to perform specific tasks,

constrained by how Apps-programmers program
them. App-developers control what cloud re-
sources to use and how interaction paths are put
together. While Apps are widely used and highly
popular, Apps have their perils. Firstly, the expo-
nential growth in number is overwhelming. Sec-
ondly, App-users have no control. Apps are meant
to be used by generic users. They are not meant
for addressing personalized and situational re-
quirements. There is a gap for end users in the
current state of software engineering.

Take car engineering as an analogy. If only car
engineers have enough skills and knowledge to
drive a car, then the world has no car for the gen-
eral public. But because car engineers design ac-
cessible controls for their users (e.g. wheels,
ignition device etc.) by abstracting away the com-
plexity of car engineering, average users can drive
cars by themselves, independent of car engineers,
without any cognizance of car engineering.

Applying this driving analogy in tasking from the
end users’ perspective, how can complexity in
software engineering be abstracted into simplified
controls that average users can use to control task
for themselves, independent of software engi-
neers, and without any cognizance of software
engineering? What are the forms of tasking con-
trols, equivalent to wheels and ignition in driving,
that is accessible to average users? Pursuing an-
swers and solutions to the above question is what
motivates the work and contribution of this paper.

There are quite a number of recent researches in
this problem space that can be grouped by their
approaches. Firstly, there is the end-user pro-
gramming approach [2, 9]. Secondly, there are
mash-ups [2, 10]. Thirdly there is the visual pro-

2

gramming approach using wiring [5]. Fourthly,
there are early implementations of tasking ap-
proach, using control-metaphor without requiring
any cognizance of software engineering nor pro-
gramming from the end users. IFTTT [3] and
Zapier [4] are two very popular examples.

In this paper, I establish a tasking conceptual
model. I also establish the importance of an open
tasking model and describe the features that make
a tasking model open. I compare existing tasking
approaches to that of web tasking [7]. I further
propose to extend tasking into the cloud space,
adding “Task as a Service” (TaaS) as a cloud lay-
er of abstractions for user tasking on the cloud.

The remainder of this paper is organized as fol-
lows. Section II describes the scenarios. Section
III discusses related work. Section IV establishes
a tasking conceptual model. Section V proposes
Tasking as a Service as a solution. Section VI
concludes the paper and proposes future work.

2 Scenario

This section highlights a few TaaS scenarios to
illustrate the gaps between today’s Apps and us-
ers’ personalized and situational task require-
ments.

Imagine an online shopper wants to buy an
iWatch based on the goals that he set for himself.
A use case would be to specify two conditions: (1)
weight loss goal of twenty pounds and (2) his visa
spending for the month is less than two thousand
dollars, then to specify the action sequence: (1)
order of iWatch, (2) followed by notifying this
friends with a message. The user wants to have
control over the conditions and the action se-
quence of his task and automate the triggering of
its execution once the specified conditions are met
[See Figure 1].

Figure 1: A TaaS Use Case

Such daily tasks have to be so easy to put together
by average users that it can become a regular,
day-to-day undertaking unassisted by IT.

Internet of Things (IoT) also adds to the valida-
tion of the need for TaaS. With fast increase of
devices, users need to take over the control of IoT
devices in order to set them up for their own pur-
poses. For example: if smart-energy thermostat
saves $500, notify family with a message, “well
done, guys!” and auto order the iTV.

There are also many TaaS scenarios in the B2B
space that can greatly improve the enterprise
businesses operational efficiency by web task
automation. For example: if a product item has
less then ten left in the inventory and the price for
replenishment is not greater than a certain amount,
plus the supplier is in good standing, then auto-
matically replenish through the cloud. Many simi-
lar scenarios can be derived in other domains such
as healthcare, smarter cities etc. to illustrate the
need of a tasking approach.

Here is a summary of a common set of character-
istics that point to the need for tasking because
Apps won’t do:
• Users have a need to take charge of the con-

trol of task conditions, including:
o The choice of resources
o The specification of condition com-

binations
• Users have a need to take charge of the con-

trol of task actions, including:
o The choice of resources
o The specification of action sequence

for execution
• Users want to delegate the checking of condi-

tion fulfillment and the subsequent initiation
of task execution.

• Users have a requirement for a light-weight,
minimalist approach. For example: Coding-
deploy-run platform for Apps is completely
inappropriate for emergency room doctors,
who needs to set up unique patient’s vital-
sign combination of conditions for patient
monitoring. Even though they have the capa-
bility to acquire programming skills, their on-
site situations require them to use tools that
are drastically simple and accessible in their
ER setting.

3

3 Related Work

In this section, I summarize the related work cate-
gorized by their approaches.

3.1 End User Programming
There has been significant research in End-user
software engineering (EUSE), distinguishing (i)
end-user programming from professional pro-
gramming; with an intent-based differentiation:
End-user programming produces program for
personal use. Professional programming produces
program to be used by larger and more generic
groups of users [9].

EUSE research takes various approaches ranging
from (i) simplifying the acquisition of program-
ming skills; to (ii) providing programming assis-
tance by using metaphors in graphical interfaces,
or by using abstracted representations to hide
complex programming concepts, or by providing
helper codes to avoid syntactical errors etc.[2,9].

Scratch from MIT [11] has taken EUSE to the
furthest by providing a gamification style of pro-
gramming as a stepping stone to computer pro-
gramming for end users, leveraging interactive
story characters, music and many other entertain-
ing features [See Figure 2].

Figure 2: Scratch End User Programming

by Gamification

Nevertheless, programming is still primary meta-
phor. In reality, there are many end users’ day-to-
day settings that programming environment is
plainly inappropriate and inaccessible for the situ-
ation. Previous examples of emergency room sit-
uations for doctors, or on-site inventory checking
and mobility requirement for B2B inventory tasks
are some good examples.

3.2 Visual Programming
Visual programming refers to a set of interaction
technique and visual notations for expressing pro-
grams. Elements of programming language such
as loops; development environment such as con-
tainers or runtime libraries etc. are abstracted into
graphical representations [9]. Wiring is the typical
end-user control that users used to put them to-
gether to create the program, and help users to
overcome the cognitive difficulties in program-
ming.

Figure 3: Node.Red Flow Editor

as an example of visual programming to create apps

Node.Red is a typical example of visual pro-
gramming through wiring, availing in IBM’s
Bluemix cloud platform [12]. While it is a much-
simplified programming environment than today’s
IDEs, programming is still the central metaphor.
The graphical representations expose technologi-
cal constructs such as “WebSocket”, “httpRe-
sponse”, “Tcpip”, “mqtt” etc., [See Figure 3]. End
users have to acquire the associated technical
knowledge to master it [5]. It has the same chal-
lenges of appropriateness and accessibility when
used in real life, on-site scenarios as previously
stated.

3.3 Mashups
Mashups is designed to combine existing web-
based content and services to create new applica-
tions. This is a significant breakthrough in that it
stops using programming as the central control
metaphor like EUSE or visual programming. In-
stead, it breaks new ground by using a control-
metaphor that is in the users’ domain such as
“spreadsheets” and “pipes” [10]. However, the
preparation steps to setup the pipes and spread-
sheets, including the cleansing of data crawling
for the table, or customizing the ‘operators’ of

4

these pipes, or customizing the operators required
low-level technical skills such as data processing
or programming. As a result, this mashup ap-
proach suffers adoption hurdles by average users
in their every day situations.

3.4 Tasking
The recent flourishing of start-ups, such as IFTTT
[3], Zapier [4] and many others, offer average
users freedom to associate “condition” with “ac-
tion”. These offerings have become a trend too
prominent to ignore. I coin this approach “Task-
ing”, as distinctively different from end-user pro-
gramming, visual programming and mashups.

IFTTT [See Figure 4] names it “Recipe”, Zapier
[See Figure 5] names it “ZAP”. Tasking in IFTTT
is proprietary and internal. ZAP’s tasking is by
vendor-specific scripting.

Figure 4: IFTTT User Interface for “Recipe” [3]

Figure 5: Zapier User Interface for “ZAP” [4]

4 A Tasking Conceptual
Model

Figure 6 summarizes the difference between to-
day’s Apps and the Tasking approach. Tasking is
the new paradigm that breaks entirely away from
the programming metaphor yet not requires users

to acquire any programming or technical skills.

Figure 6: Apps versus Tasking

This paper establishes a tasking conceptual model
[See Figure 7] that has three logical components.
Firstly, there is a “Tasking Platform” provided by
a tasking vendor (such as Zapier). Secondly, there
is a “Tasking Resource Representation”. It is a
resource model defined by the tasking vendor to
prescribe how IT can take their entities from cur-
rent Apps or curated services and transforms them
into tasking resources for the tasking platform.
Thirdly, there is a “Tasking Control-Metaphor”.
It is a control-model that users use to maneuver
tasking resources from the tasking platform to
create their own personalized tasks.

IFTTT and Zapier each have its tasking platform.
Both tasking platforms adopt “Tasking Template”
as the tasking control-metaphor. There is only one
task pattern for the template, which is “Condition-
then-Action”.

Figure 7: The Tasking Conceptual Model

Current implementations of the tasking approach
have their limitations and challenges, reflecting its
infancy. Firstly, current tasking platforms and the
tasking resource representations are either propri-
etary or are built upon vendor-based scripting
language. They are not open in architecture and

5

therefore not a candidate to mature into widely
adopted industry standards in the future. There is
no open APIs available from these tasking plat-
forms, making it impossible for third parties to
build upon them. This inhibits open participation
and contributions from developers. The conse-
quence for prohibiting broad adoption is severe.
Secondly, current tasking implementations lack a
well thought out integration architecture. Users
suffer from inconsistent experience. From one
interaction to the next, users are exposed to site-
specific experiences that are distinctively differ-
ent, like being taken around the world from click
to click. Thirdly, task template is a rigid meta-
phor. There is only one ‘condition’ and one ‘ac-
tion’ setup in the template. The lack of support for
multiple conditions and multiple actions in se-
quence may be too restrictive for broad adoption.
For example, the current task template cannot
handle the following use case: everyday at 6:00
a.m. [condition 1], if IBM stock price is > $180
[condition 2] and US currency exchange rate is <
89 cents [condition 3], then post on Facebook
with a message “stock doing good” [action 1],
followed by a tweet [action 2], followed by notify
colleagues [action 3]. Fourthly, today’s tasking
platforms are positioned as Apps-integration plat-
forms. They are not designed with the web in
mind. Their approach is not open, making the
scope very restricted.

5 Task as a Service
This section discusses web tasking over the cloud
and illustrates how this approach does not have
the challenges identified in the previous section. It
also proposes adding a Task as a Service layer to
current cloud platform.

5.1 An Open Tasking Model

Figure 8: An Open Tasking Conceptual Model

For tasking to be as widely adopted as web
browsing, the tasking conceptual model must be
open. An open tasking conceptual model has the
following characteristics:
• The tasking platform must be ready for open

source with well-defined APIs. This enables
third parties to build alternate Tasking Con-
trol Metaphor on top.

• The Tasking Resource Representation must
be open and standard-ready. The representa-
tion itself must be a declarative artifact with a
meta-model. It should not be a programmatic
artifact. A declarative artifact, like HTML,
provides a method for third party tasking
platforms to inter-change.

• The tasking control metaphor must be flexi-
ble, able to support any device of interactions
and is open to support multiple metaphors
and multi-modal of expressions.

5.2 Web Tasking: An Open
Tasking Model for the Web
Web tasking [7,8] is the notion of extending the
current web architecture for enabling end users to
freely task with web resources from across the
web, as freely as they browse, as in the web-
browsing paradigm. Web tasking distinguishes
itself from current tasking approaches like IFTTT
or Zapier etc. in the following ways. Firstly, its
architecture is in full compliance of Fielding’s
web architectural principles [13], therefore is de-
signed with a web scope in mind to interoperate
generically across the web. Its architecture is also
open and without domain specificity. For example,
any web tasking resources are URL addressable
web artifacts, which is not the case for Recipe of
IFTTT or ZAP of Zapier. Secondly, because task-
ing resource representations are web artifacts,
they can be linked together by hypermedia links.
For example, actions can be chained together in
simple hypermedia links. Therefore it is able to
support a tasking control metaphor that is as flex-
ible as hypermedia links actions.

5.3 BOTbit: A Universal Mod-
el for Tasking Resource Repre-
sentations for the Web
Web tasking architecture has a meta-model called
REAST [8] that is representational action-state
transfer. It is designed to represent actions of re-

6

sources instead of the data-instance of resources.
BOTbit’s meta-model is an added media-type.
This enables open and standard-ready prescribed
steps for developers to contribute web-tasking
resources with built-in interoperability. REAST’s
standardized Action interfaces, and its attribute-
model for web resources, enabled simple widgets
to be built as units of control to express actions
and conditions that average users can handle. It
also enables a flexible control-metaphor such as
jigsaw or train to be built for average users.

Just like HTML has its universal representation
meta-model in the web-browsing paradigm, and it
is pivotal for its web-scope universal operations,
in the same token, in the paradigm of web tasking,
it has a Tasking Resource Representation that is
universal across the web, and is pivotal for web
tasking. Firstly, it enables different vendors Task-
ing Platform to process each other’s Tasking Re-
source Representation instances. Secondly, it
provides an abstraction needed such that the web
tasking platform can built a universal tasking user
experience and sparing the users from the site-
specific content from one interaction to another.
I coin this universal model for Tasking Resource
Representation in our Web Tasking implementa-
tion “BOTbit” (that is a bit of resource for the
web roBOT). BOTbit in web tasking is analogous
to HTML in web browsing.

BOTbit as Web Tasking’s Tasking Resource Rep-
resentation model has the following major parts:
(1) It has a universal action representation of
resources with standardized action interface,
namely, create, read, update, delete and others.
This part is called REAST (REpresentational Ac-
tion State Transfer) [8]. Imagine turning “Weather
Resource” into a web tasking resource, this
Weather BOTbit instance will have one action
representation, “Read”. User can task by adding a
Schedule-condition to create a task with the se-
mantic of “<condition> everyday at 6:00 a.m.,
<action>read weather”.
(2) It has a resource attribute collection that is
mapped back to original data sources. This por-
tion is designed for the automatic generation of
user-forms used in user-author conditional ex-
pressions. Using the weather BOTbit again, one
can say “<condition> When weather.status =
“rainy”, <action> notify friends”.
(3) Other elements like BOTbit graphical Icon,
mnemonic labels, and others.

This universal web tasking resource model ena-
bles interoperability of resources of diversified
types and sources, enables cross domain interac-
tions and is an inter-changeable web artifact to be
processed by machine (for web automation) or by
human [12].

5.4 Scribble: A Multi-Modal
Tasking Control Metaphor
Web tasking [7] uses a tasking control-metaphor
called “Scribble”. I call this a multi-modal tasking
control-metaphor because users can scribble by
text (the “natural language” control-metaphor), or
scribble by widget using the jigsaw puzzle con-
trol-metaphor.

Whether scribble by text or by widgets, there are
three units of controls supported by Web Tasking
Platform: they are namely, “Action”, “Condition”
and “Schedule”. Sequence of actions are linked
together by hypermedia links between. For each
“Action”, there can be zero or more “Condition”
widget attached. “Schedule” widget has to be
placed next to the first “Action” widget, which
control the schedule for the execution of the entire
action sequence. User selects the widget type,
snap in a user-chosen Web Tasking resource icon
to complete the scribble ready for submission to
the Tasking Platform.

The tool that provides end users scribble support
is called the Web Tasker, analogous to the func-
tion of Web Browsing in the browsing paradigm.

5.5 An Open Architecture for
Tasking Infrastructure
The middleware of the Web Tasking Platform is
called Web Interaction Server [14]. Analogous to
the web application server for web applications,
Web Interaction server is a server side engine,
built to support BOTbit as the web tasking re-
source model. It has open APIs and is open-
source-able and standardize-able.

Because of the open architecture of Web Interac-
tion Server, existing Apps can call these Web
Interaction Server APIs and add Web Tasking
capabilities to enhance existing Apps as a hybrid.
This is what IFTTT and Zapier cannot do without
a web compliant architecture.

7

5.6 TaaS: a Cloud Layer for
Users
Current cloud layers are namely, Infrastructure as
a Service (IaaS), providing storage, computing
capacity and connectivity as services, Platform as
a Service (PaaS) providing cloud operating devel-
oping environment as services, and Software as a
Service (SaaS), providing application solution
services, such as healthcare solution, commerce
solution etc [1]. This is a highly efficient devel-
opment environment for developers who can
compose applications by assembling existing ser-
vices to create Apps for their users.

This paper proposes to add Task as a Service for
end users to access web tasking resources to com-
pose their tasks. By using a web-tasking resource
admin tool, current APIs from the API economy
of the SaaS layer can be converted into BOTbits,
transforming them into web tasking resources for
end users to assemble tasks with.

The TaaS layer can also be a seamless integration
layer to interoperate with other vendors’ cloud
platforms. For example, APIs from the SaaS layer
of another cloud vendor can be transformed into
corresponding BOTbits for the local TaaS layer,
made available to its end users the same way
without end users noticing that these BOTbits are
from foreign cloud environment, making cross
vendor cloud interoperability seamless.

TaaS layer conceptually should contain the fol-
lowing logical components:
• A Web Tasker: a tasking environment for

users to do web tasking (aka to scribble).
TaaS needs to add billing and metering to the
web tasking.

• A Web Tasking Community: We have a task-
ing community to share scribbles with others
and to consume scribble produced by others

• A BOTbit Repository: to collect a list of local
(to the SaaS layer) and remote (from other
vendor’s SaaS layer) web tasking resources
that TaaS users can access

• A third party Governance Infrastructure of
BOTbits needs to be put in place to ensure
the trustworthiness of services across the
cloud.

6 Conclusions and Future
Work

In this paper, I argued that because programming
is still central to the control-metaphor of end user
programming approach, visual programming and
the mashup approach, a drastically different soft-
ware engineering approach is needed to enable
accessible controls for average users for their own
tasking using cloud resources.

In this paper, I named the recent trend from
IFTTT and Zapier as the “Tasking” approach and
provides a Tasking Conceptual Model, asserting
that because the control-metaphor in the Tasking
approach is from the end users’ domain, it is more
accessible to end users. After pointing out the
challenges of these popular tasking approaches,
this paper also proposed using web tasking on the
cloud as an alternative, pointing out the architec-
tural advantage of web tasking being compliant to
the web principles, therefore reaps the benefits of
openness, and interoperability. This paper also
called out the pivotal importance of having a uni-
versal model for Tasking Resource Representa-
tion in order for web wide operations without
domain specificity, even including the Internet of
Things. This paper also took this further to pro-
pose adding TaaS as a cloud layer for users.

Tasking and TaaS is just at its infancy. However,
the pressing user requirement to demand more
accessible controls over IT that is consumable for
end users has been validated by the overwhelming
user responses to these early implementations
such as IFTTT and Zapier. This paper calls out
the need for Tasking and TaaS as a research area
that warrant focus and top attention.

There are challenges that should be considered for
future study. Self-efficacy validation, end user
testing, debugging, trust, privacy, security are key
areas that warrant much attention ready for enter-
prise consumption.

References

[1] M. Litoiu, M. Woodside, J. Wong, J. Ng, G.
Iszlai. A Business Driven Cloud Optimiza-
tion Architecture. Proceedings of the 2010
AGM Symposium on Applied Computing, pp.
380-385, 2010.

8

[2] A.J. Ko et al.. The State of the Art in End-
User Software Engineering. ACM Computing
Surveys (CSUR) Volume 43 Issue 3, Article
21. April, 2011.

[3] IFTTT / Put the internet to work for you :
https://ifttt.com/.

[4] Automate the Web – Zapier :
https://zapier.com/.

[5] Node-RED : http://nodered.org/.

[6] M. Blackstock, R. Lea. Toward a Distributed
Data Flow Platform for the Web of Things
(Distributed Node-Red). Proceedings of the
5th International Workshop of Web of Things,
pp. 34-39, 2014.

[7] J. W. Ng, D. H. Lau. Going Beyond Web
Browsing to Web Tasking: Transforming
Web Users from Web Operators to Web Su-
pervisors. Proceedings of IEEE ICWS Work-
shop on Personalized Web Tasking (PWT
2013), pp. 126–130, 2013.

[8] J. W. Ng. Adapting REST to REAST: Build-
ing Smart Interactions for Personal Web
Tasking. Proceedings of IEEE Services 2014,
2nd International Workshop on Personalized
Web Tasking (PWT 2014), pp. 38-46, July
2014.

[9] A.J. Ko, B.A. Myers, H.H. Aung. Six Learn-
ing Barriers in End-User Programming Sys-
tems. IEEE Symposium on Visual Languages
and Human Centric Computing. pp.199-206,
2004.

[10] J. Wong, J. I. Hong. Making Mashups with
Marmite: towards end-user programming for
the web. Proceeding of the SIGCHI Confer-
ence on Human Factors in Computing Sys-
tems, pp. 1435-1444, 2007.

[11] Scratch: https://scratch.mit.edu/ .

[12] R. Verborgh, E. Mannens, R.V. de Walle.
The Rise of the Web for Agent. Proceedings
of The First International Conference on
Building and Exploring Web Based Environ-
ments (WEB 2013), pp. 69–74, 2013.

[13] R. N. Taylor. Principled Design of the Mod-
ern Web Architecture. ACM Transactions on
Internet Technology (TOIT) 2(2):115–150,
2002.

[14] J. Ng, D. Lau, T. Ng. Web Interaction Server:
A Web Tasking Middleware: A Position Pa-
per. Proceeding of 24th Annual International
Conference on Computer Science and Soft-
ware Engineering (CASCON 2014), pp.303-
305, 2014.

